TRIM28: A Dual-Role Regulator in Cancer Progression and Therapy

Main Article Content

Abolfazl Imantalab
Azin Azadfekr
Fatemeh Khademorezaeian
Haniye Tehmatnejad
Ensieh Sagheb Sadeghi

Abstract

Introduction: Cancers of the digestive system account for a significant proportion of global mortality, with nearly one-third of cancer-related deaths linked to digestive system malignancies. Among the factors involved in tumorigenesis, TRIM28, also known as KAP1, plays a multifaceted role in cancer progression.


Materials and Methods: This review examines the role of TRIM28 in cancer, focusing on its interaction with the tumor suppressor TP53, the E3 ubiquitin ligase MDM2, and other factors involved in cellular proliferation and death. We discuss how TRIM28 influences cancer progression through chromatin remodeling, DNA damage response (DDR) signaling, and regulating apoptotic, autophagic, and necroptotic pathways.


Results: TRIM28 is essential for multiple cellular processes in mammalian cells, including gene silencing, cell growth, and DNA repair. Overexpression of TRIM28 is associated with the progression of various cancers and plays a dual role in tumor proliferation and inhibition, depending on the cancer type and stage. TRIM28's phosphorylation and interaction with chromatin remodeling factors are crucial in DDR, affecting cancer cell survival.


Conclusion: TRIM28 significantly influences cancer cell fate by modulating apoptosis, necroptosis, and autophagy, highlighting its potential as a therapeutic target in cancer treatment.

Article Details

Section
Reveiw Article

References

1. Park HH, Kim HR, Park SY, Hwang SM, Hong SM, Park S, Kang HC, Morgan MJ, Cha JH, Lee D, Roe JS, Kim YS. RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol Cancer. 2021 Aug 21;20(1):107. doi: 10.1186/s12943-021-01399-3. PMID: 34419074; PMCID: PMC8379748.

2. Li K, Wang H, Jiang B, Jin X. TRIM28 in cancer and cancer therapy. Front Genet. 2024 Jul 19;15:1431564. doi: 10.3389/fgene.2024.1431564. PMID: 39100077; PMCID: PMC11294089.

3. Ma X, Jia S, Wang G, Liang M, Guo T, Du H, Li S, Li X, Huangfu L, Guo J, Xing X, Ji J. TRIM28 promotes the escape of gastric cancer cells from immune surveillance by increasing PD-L1 abundance. Signal Transduct Target Ther. 2023 Jun 26;8(1):246. doi: 10.1038/s41392-023-01450-3. PMID: 37357254; PMCID: PMC10290989.

4. Zhang F, Zhu T, Wu C, Shen D, Liu L, Chen X, Guan Y, Ding H, Tong X. TRIM28 recruits E2F1 to regulate CBX8-mediated cell proliferation and tumor metastasis of ovarian cancer. Hum Cell. 2023 Nov;36(6):2113-2128. doi: 10.1007/s13577-023-00983-7. Epub 2023 Sep 14. PMID: 37709991.

5. Shang Z, Wu X, Zheng S, Wei Y, Hong Z, Ye D. A systematic pan-cancer analysis identifies TRIM28 as an immunological and prognostic predictor and involved in immunotherapy resistance. J Cancer. 2023 Sep 4;14(15):2798-2810. doi: 10.7150/jca.86742. PMID: 37781084; PMCID: PMC10539564.

6. Yang Y, Lu H, Chen C, Lyu Y, Cole RN, Semenza GL. HIF-1 Interacts with TRIM28 and DNA-PK to release paused RNA polymerase II and activate target gene transcription in response to hypoxia. Nat Commun. 2022 Jan 14;13(1):316. doi: 10.1038/s41467-021-27944-8. PMID: 35031618; PMCID: PMC8760265.

7. Ge LP, Jin X, Ma D, Wang ZY, Liu CL, Zhou CZ, Zhao S, Yu TJ, Liu XY, Di GH, Shao ZM, Jiang YZ. ZNF689 deficiency promotes intratumor heterogeneity and immunotherapy resistance in triple-negative breast cancer. Cell Res. 2024 Jan;34(1):58-75. doi: 10.1038/s41422-023-00909-w. Epub 2024 Jan 2. PMID: 38168642; PMCID: PMC10770380.

8. Lin J, Guo D, Liu H, Zhou W, Wang C, Müller I, Kossenkov AV, Drapkin R, Bitler BG, Helin K, Zhang R. The SETDB1-TRIM28 Complex Suppresses Antitumor Immunity. Cancer Immunol Res. 2021 Dec;9(12):1413-1424. doi: 10.1158/2326-6066.CIR-21-0754. PMID: 34848497; PMCID: PMC8647838.

9. Dong C, Luan F, Tian W, Duan K, Chen T, Ren J, Li W, Li D, Zhi Q, Zhou J. Identification and validation of crucial lnc-TRIM28-14 and hub genes promoting gastric cancer peritoneal metastasis. BMC Cancer. 2023 Jan 23;23(1):76. doi: 10.1186/s12885-023-10544-8. PMID: 36690975; PMCID: PMC9872371.

10. Hol JA, Diets IJ, de Krijger RR, van den Heuvel-Eibrink MM, Jongmans MC, Kuiper RP. TRIM28 variants and Wilms' tumour predisposition. J Pathol. 2021 Jul;254(4):494-504. doi: 10.1002/path.5639. Epub 2021 Mar 15. PMID: 33565090; PMCID: PMC8252630.

11. Agarwal N, Rinaldetti S, Cheikh BB, Zhou Q, Hass EP, Jones RT, Joshi M, LaBarbera DV, Knott SRV, Cech TR, Theodorescu D. TRIM28 is a transcriptional activator of the mutant TERT promoter in human bladder cancer. Proc Natl Acad Sci U S A. 2021 Sep 21;118(38):e2102423118. doi: 10.1073/pnas.2102423118. PMID: 34518220; PMCID: PMC8463889.

12. Lu G, Du R, Dong J, Sun Y, Zhou F, Feng F, Feng B, Han Y, Shang Y. Cancer associated fibroblast derived SLIT2 drives gastric cancer cell metastasis by activating NEK9. Cell Death Dis. 2023 Jul 13;14(7):421. doi: 10.1038/s41419-023-05965-z. PMID: 37443302; PMCID: PMC10344862.

13. Zou C, Liao J, Hu D, Su Y, Lin H, Lin K, Luo X, Zheng X, Zhang L, Huang T, Lin X. SNHG8 Promotes the Progression of Epstein-Barr Virus-Associated Gastric Cancer via Sponging miR-512-5p and Targeting TRIM28. Front Oncol. 2021 Oct 15;11:734694. doi: 10.3389/fonc.2021.734694. PMID: 34722282; PMCID: PMC8554152.

14. Czerwinska P, Mackiewicz AA. Low Levels of TRIM28-Interacting KRAB-ZNF Genes Associate with Cancer Stemness and Predict Poor Prognosis of Kidney Renal Clear Cell Carcinoma Patients. Cancers (Basel). 2021 Sep 28;13(19):4835. doi: 10.3390/cancers13194835. PMID: 34638319; PMCID: PMC8508054.

15. Tsang SV, Rainusso N, Liu M, Nomura M, Patel TD, Nakahata K, Kim HR, Huang S, Rajapakshe K, Coarfa C, Man TK, Rao PH, Yustein JT. LncRNA PVT-1 promotes osteosarcoma cancer stem-like properties through direct interaction with TRIM28 and TSC2 ubiquitination. Oncogene. 2022 Dec;41(50):5373-5384. doi: 10.1038/s41388-022-02538-w. Epub 2022 Nov 8. PMID: 36348010.

16. Ning T, Zhao M, Zhang N, Wang Z, Zhang S, Liu M, Zhu S. TRIM28 suppresses cancer stem-like characteristics in gastric cancer cells through Wnt/β-catenin signaling pathways. Exp Biol Med (Maywood). 2023 Dec;248(23):2210-2218. doi: 10.1177/15353702231211970. Epub 2023 Dec 6. PMID: 38058023; PMCID: PMC10903244.

17. Li X, Yan Z, Ma J, Li G, Liu X, Peng Z, Zhang Y, Huang S, Luo J, Guo X. TRIM28 promotes porcine epidemic diarrhea virus replication by mitophagy-mediated inhibition of the JAK-STAT1 pathway. Int J Biol Macromol. 2024 Jan;254(Pt 1):127722. doi: 10.1016/j.ijbiomac.2023.127722. Epub 2023 Oct 29. PMID: 37907173.

18. Wegert J, Fischer AK, Palhazi B, Treger TD, Hilgers C, Ziegler B, Jung H, Jüttner E, Waha A, Fuchs J, Warmann SW, Frühwald MC, Hubertus J, Pritchard-Jones K, Graf N, Behjati S, Furtwängler R, Gessler M, Vokuhl C. TRIM28 inactivation in epithelial nephroblastoma is frequent and often associated with predisposing TRIM28 germline variants. J Pathol. 2024 Jan;262(1):10-21. doi: 10.1002/path.6206. Epub 2023 Oct 4. PMID: 37792584.

19. Yende AS, Williams EC, Pletcher A, Helfand A, Ibeawuchi H, North TM, Latham PS, Horvath A, Shibata M. TRIM28 promotes luminal cell plasticity in a mouse model of prostate cancer. Oncogene. 2023 Apr;42(17):1347-1359. doi: 10.1038/s41388-023-02655-0. Epub 2023 Mar 8. PMID: 36882525; PMCID: PMC10122711.

20. Sahebi, R., Akbari, N., Bayat, Z., Rashidmayvan, M., Mansoori, A., & Beihaghi, M. (2022). A Summary of Autophagy Mechanisms in Cancer Cells. Research in Biotechnology and Environmental Science, 1(1), 28–35. https://doi.org/10.58803/RBES.2022.1.1.06

21. Song T, Lv S, Ma X, Zhao X, Fan L, Zou Q, Li N, Yan Y, Zhang W, Sun L. TRIM28 represses renal cell carcinoma cell proliferation by inhibiting TFE3/KDM6A-regulated autophagy. J Biol Chem. 2023 May;299(5):104621. doi: 10.1016/j.jbc.2023.104621. Epub 2023 Mar 18. PMID: 36935008; PMCID: PMC10141522.

22. Kim YS, Potashnikova DM, Gisina AM, Kholodenko IV, Kopylov AT, Tikhonova OV, Kurbatov LK, Saidova AA, Tvorogova AV, Kholodenko RV, Belousov PV, Vorobjev IA, Zgoda VG, Yarygin KN, Lupatov AY. TRIM28 Is a Novel Regulator of CD133 Expression Associated with Cancer Stem Cell Phenotype. Int J Mol Sci. 2022 Aug 30;23(17):9874. doi: 10.3390/ijms23179874. PMID: 36077272; PMCID: PMC9456468.

23. Tan Q, Ma J, Zhang H, Wu X, Li Q, Zuo X, Jiang Y, Liu H, Yan L. miR-125b-5p upregulation by TRIM28 induces cisplatin resistance in non-small cell lung cancer through CREB1 inhibition. BMC Pulm Med. 2022 Dec 7;22(1):469. doi: 10.1186/s12890-022-02272-9. PMID: 36476351; PMCID: PMC9730690.

24. Li D, Cheng J, Zhang W, Zhang L, Maghsoudloo M, Fu J, Liu X, Xiao X, Wei C, Fu J. Tripartite motif-containing 28 (TRIM28) expression and cordycepin inhibition in progression, prognosis, and therapeutics of patients with breast invasive carcinoma. J Cancer. 2024 Jun 11;15(13):4374-4385. doi: 10.7150/jca.95876. PMID: 38947392; PMCID: PMC11212093.

25. Zhao MX, Ding SG, Liu LN, Wang Y, Zhang J, Zhang HJ, Zhang Y. [Predicative value of expression of TrkB and TRIM29 in biopsy tissues from preoperative gastroscopy in lymph node metastasis of gastric cancer]. Zhonghua Yi Xue Za Zhi. 2012 Feb 14;92(6):376-9. Chinese. PMID: 22490895.

26. Strano S, Dell'Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G. Mutant p53: an oncogenic transcription factor. Oncogene. 2007;26(15):2212–9. doi: 10.1038/sj.onc.1210296

27. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9. doi: 10.1038/387296a0

28. Kubbutat M, Jones S, Vousden K. Regulation of p53 stability by Mdm2. Nature. 1997;387(6630):299–303. doi: 10.1038/387299a0

29. Pópulo H, Lopes J, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886–918. doi: 10.3390/ijms13021886

30. Li F, Wang Z, Lu G. TRIM28 promotes cervical cancer growth through the mTOR signaling pathway. Oncol Rep. 2018;39(4):1860–6. doi: 10.3892/or.2018.6235

31. Chen Y, Cheng H, Long H. Tripartite motif containing 28 (TRIM28) promotes the growth and migration of endometrial carcinoma cells by regulating the AKT/mTOR signaling pathway. Gen Physiol Biophys. 2021;40(3):245–52. doi: 10.4149/gpb_2021009

32. Qi Z, Cai S, Cai J, Chen L, Yao Y, Chen L, et al. miR-491 regulates glioma cells proliferation by targeting TRIM28 in vitro. BMC Neurol. 2016;16(1):248. doi: 10.1186/s12883-016-0769-y

33. Zhou Y, Wang B, Wang Y, Chen G, Lian Q, Wang H. miR-140-3p inhibits breast cancer proliferation and migration by directly regulating the expression of tripartite motif 28. Oncol Lett. 2019;17(4):3835–41. doi: 10.3892/ol.2019.10038

34. Zhang P, Ding D, Shi B, Zhang S, Gu L, Wang Y. Expression of TRIM28 correlates with proliferation and bortezomib-induced apoptosis in B-cell non-Hodgkin lymphoma. Leuk Lymphoma. 2018;59(11):2639–49. doi: 10.1080/10428194.2018.1452207

35. Qi Z, Cai J, Chen L, Yue Q, Gong Y, Yao Y, et al. TRIM28 as an independent prognostic marker plays critical roles in glioma progression. J Neurooncol. 2016;126(1):19–26. doi: 10.1007/s11060-015-1897-8

36. Zhang R, Liu Z, Wei D, Yong Y, Lin P, Li H, et al. UBE2S interacting with TRIM28 in the nucleus accelerates cell cycle by ubiquitination of p27 to promote hepatocellular carcinoma development. Signal Transduct Target Ther. 2021;6(1):64. doi: 10.1038/s41392-020-00432-z

37. Chen L, Chen D, Kurtyka C, Rawal B, Fulp W, Haura E, et al. Tripartite motif containing 28 (Trim28) can regulate cell proliferation by bridging HDAC1/E2F interactions. J Biol Chem. 2012;287(48):40106–18. doi: 10.1074/jbc.M112.380865

38. Strasser A, Vaux D. Cell death in the origin and treatment of cancer. Mol Cell. 2020;78(6):1045–54. doi: 10.1016/j.molcel.2020.05.014

39. Liu L, Li H, Hu D, Wang Y, Shao W, Zhong J, et al. Insights into N6-methyladenosine and programmed cell death in cancer. Mol Cancer. 2022;21(1):32. doi: 10.1158/1541-7786.MCR-21-0311

40. Wang C, Ivanov A, Chen L, Fredericks W, Seto E, Rauscher F, et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J. 2005;24(18):3279–90. doi: 10.1038/sj.emboj.7600791

41. Yang B, O'Herrin S, Wu J, Reagan-Shaw S, Ma Y, Bhat K, et al. MAGE-A, MAGE-B, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res. 2007;67(20):9954–62. doi: 10.1158/0008-5472.CAN-07-1478

42. Gao X, Li Q, Chen G, He H, Ma Y. MAGEA3 promotes proliferation and suppresses apoptosis in cervical cancer cells by inhibiting the KAP1/p53 signaling pathway. Am J Transl Res. 2020;12(7):3596–612.

43. Tian C, Xing G, Xie P, Lu K, Nie J, Wang J, et al. KRAB-type zinc-finger protein apak specifically regulates p53-dependent apoptosis. Nat Cell Biol. 2009;11(5):580–91. doi: 10.1038/ncb1864

44. Liu L, Zhang L, Wang J, Zhao X, Xu Q, Lu Y, et al. Downregulation of TRIM28 inhibits growth and increases apoptosis of nude mice with non-small cell lung cancer xenografts. Mol Med Rep. 2018;17(1):835–42. doi: 10.3892/mmr.2017.7955

45. Fernandez-Marrero Y, Bachmann D, Lauber E, Kaufmann T. Negative regulation of BOK expression by recruitment of TRIM28 to regulatory elements in its 3' untranslated region. iScience. 2018;9:461–74. doi: 10.1016/j.isci.2018.11.005

46. Park H, Kim H, Park S, Hwang S, Hong S, Park S, et al. RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol Cancer. 2021;20(1):107. doi: 10.1186/s12943-021-01399-3

47. Zu R, Yu Z, Zhao J, Lu X, Liang W, Sun L, et al. Quantitative analysis of phosphoproteome in necroptosis reveals a role of TRIM28 phosphorylation in promoting necroptosis-induced cytokine production. Cell Death Dis. 2021;12(11):994. doi: 10.1038/s41419-021-04290-7

48. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020;19(1):12. doi: 10.1186/s12943-020-1138-4

49. Yang Y, Fiskus W, Yong B, Atadja P, Takahashi Y, Pandita T, et al. Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. Proc Natl Acad Sci U S A. 2013;110(17):6841–6. doi: 10.1073/pnas.1217692110

50. Barde I, Rauwel B, Marin-Florez R, Corsinotti A, Laurenti E, Verp S, et al. A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science. 2013;340(6130):350–3. doi: 10.1126/science.1232398

51. Peng Y, Zhang M, Jiang Z, Jiang Y. TRIM28 activates autophagy and promotes cell proliferation in glioblastoma. Onco Targets Ther. 2019;12:397–404. doi: 10.2147/OTT.S188101

52. Pineda C, Ramanathan S, Fon Tacer K, Weon J, Potts M, Ou Y, et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell. 2015;160(4):715–28. doi: 10.1016/j.cell.2015.01.034

53. Jin X, Pan Y, Wang L, Zhang L, Ravichandran R, Potts P, et al. MAGE-TRIM28 complex promotes the Warburg effect and hepatocellular carcinoma progression by targeting FBP1 for degradation. Oncogenesis. 2017;6(4)doi: 10.1038/oncsis.2017.21

54. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212–26. doi: 10.1016/j.tcb.2018.12.001

55. Venkov C, Link A, Jennings J, Plieth D, Inoue T, Nagai K, et al. A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest. 2007;117(2):482–91. doi: 10.1172/JCI29544

56. Yu C, Zhan L, Jiang J, Pan Y, Zhang H, Li X, et al. KAP1 is overexpressed and correlates with increased metastatic ability and tumorigenicity in pancreatic cancer. Med Oncol. 2014;31(7):25. doi: 10.1007/s12032-014-0025-5

57. Chen L, Muñoz-Antonia T, Cress W. Trim28 contributes to EMT via regulation of e-cadherin and n-cadherin in lung cancer cell lines. PLoS One. 2014;9(7)doi: 10.1371/journal.pone.0101040

58. Wei C, Cheng J, Zhou B, Zhu L, Khan M, He T, et al. Tripartite motif containing 28 (TRIM28) promotes breast cancer metastasis by stabilizing TWIST1 protein. Sci Rep. 2016;6:29822. doi: 10.1038/srep29822

59. Deng B, Zhang S, Zhang Y, Miao Y, Meng X, Guo K. Knockdown of tripartite motif containing 28 suppresses the migration, invasion and epithelial-mesenchymal transition in ovarian carcinoma cells through down-regulation of Wnt/b-catenin signaling pathway. Neoplasma. 2017;64(6):893–900. doi: 10.4149/neo_2017_611

60. Lan H, Lin C, Yuan H. Knockdown of KRAB domain-associated protein 1 suppresses the proliferation, migration and invasion of thyroid cancer cells by regulating P68/DEAD box protein 5. Bioengineered. 2022;13(5):11945–57. doi: 10.1080/21655979.2022.2067289

61. Yokoe T, Toiyama Y, Okugawa Y, Tanaka K, Ohi M, Inoue Y, et al. KAP1 is associated with peritoneal carcinomatosis in gastric cancer. Ann Surg Oncol. 2010;17(3):821–8. doi: 10.1245/s10434-009-0795-8

62. Zou C, Liao J, Hu D, Su Y, Lin H, Lin K, et al. SNHG8 promotes the progression of Epstein-Barr virus-associated gastric cancer via sponging miR-512-5p and targeting TRIM28. Front Oncol. 2021;11:734694. doi: 10.3389/fonc.2021.734694

63. Do E, Moon H, Kang K, Yoon J, Kim Y, Seo J, et al. Kap1 regulates the self-renewal of embryonic stem cells and cellular reprogramming by modulating Oct4 protein stability. Cell Death Differ. 2021;28(2):685–99. doi: 10.1038/s41418-020-00613-x

64. Seki Y, Kurisaki A, Watanabe-Susaki K, Nakajima Y, Nakanishi M, Arai Y, et al. TIF1beta regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner. Proc Natl Acad Sci U S A. 2010;107(24):10926–31. doi: 10.1073/pnas.0907601107

65. Cheng B, Ren X, Kerppola T. KAP1 represses differentiation-inducible genes in embryonic stem cells through cooperative binding with PRC1 and derepresses pluripotency-associated genes. Mol Cell Biol. 2014;34(11):2075–91. doi: 10.1128/MCB.01729-13

66. Miles D, de Vries N, Gisler S, Lieftink C, Akhtar W, Gogola E, et al. TRIM28 is an epigenetic barrier to induced pluripotent stem cell reprogramming. Stem Cells. 2017;35(1):147–57. doi: 10.1002/stem.2453

67. Klimczak M, Czerwińska P, Mazurek S, Sozańska B, Biecek P, Mackiewicz A, et al. TRIM28 epigenetic corepressor is indispensable for stable induced pluripotent stem cell formation. Stem Cell Res. 2017;23:163–72. doi: 10.1016/j.scr.2017.07.012

68. Oleksiewicz U, Gładych M, Raman A, Heyn H, Mereu E, Chlebanowska P, et al. TRIM28 and interacting KRAB-ZNFs control self-renewal of human pluripotent stem cells through epigenetic repression of pro-differentiation genes. Stem Cell Rep. 2017;9(6):2065–80. doi: 10.1016/j.stemcr.2017.10.031

69. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. doi: 10.1038/nm.4409

70. Czerwińska P, Shah P, Tomczak K, Klimczak M, Mazurek S, Sozańska B, et al. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget. 2017;8(1):863–82. doi: 10.18632/oncotarget.13273

71. Li J, Xi Y, Li W, McCarthy R, Stratton S, Zou W, et al. TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation. Oncogene. 2017;36(21):2991–3001. doi: 10.1038/onc.2016.453

72. Parker K, Gooding A, Valadkhan S, Schiemann W. lncRNA BORG complexes drive metastatic progression by inducing α6 Integrin/CD49f expression in breast cancer stem cells. Mol Cancer Res. 2021;19(12):2068–80. doi: 10.1158/1541-7786.MCR-21-0137

73. Czerwińska P, Jaworska A, Włodarczyk N, Mackiewicz A. Melanoma stem cell-like phenotype and significant suppression of immune response within a tumor are regulated by TRIM28 protein. Cancers. 2020;12(10). doi: 10.3390/cancers12102998

74. Porčnik A, Novak M, Breznik B, Majc B, Hrastar B, Samec N, et al. TRIM28 selective nanobody reduces glioblastoma stem cell invasion. Molecules. 2021;26(17). doi: 10.3390/molecules26175141

75. Czerwińska P, Mackiewicz A. Low levels of TRIM28-interacting KRAB-ZNF genes associate with cancer stemness and predict poor prognosis of kidney renal clear cell carcinoma patients. Cancers. 2021;13(19). doi: 10.3390/cancers13194835

76. Farrell P. Epstein-Barr Virus and cancer. Annu Rev Pathol. 2019;14:29–53. doi: 10.1146/annurev-pathmechdis-012418-013023

77. Randolph K, Hyder U, D'Orso I. KAP1/TRIM28: Transcriptional activator and/or repressor of viral and cellular programs? Front Cell Infect Microbiol. 2022;12:834636. doi: 10.3389/fcimb.2022.834636

78. Ge J, Wang J, Xiong F, Jiang X, Zhu K, Wang Y, et al. Epstein-Barr Virus-encoded circular RNA CircBART2.2 promotes immune escape of nasopharyngeal carcinoma by regulating PD-L1. Cancer Res. 2021;81(19):5074–88. doi: 10.1158/0008-5472.Can-20-4321

79. Cesarman E, Chadburn A, Rubinstein P. KSHV/HHV8-mediated hematologic diseases. Blood. 2022;139(7):1013–25. doi: 10.1182/blood.2020005470

80. Bentz G, Moss C, Whitehurst C, Moody C, Pagano J. LMP1-induced sumoylation influences the maintenance of Epstein-Barr virus latency through KAP1. J Virol. 2015;89(15):7465–77. doi: 10.1128/JVI.00711-15

81. Xu H, Li X, Rousseau B, Akinyemi I, Frey T, Zhou K, et al. IFI16 partners with KAP1 to maintain Epstein-Barr virus latency. J Virol. 2022;96(17) doi: 10.1128/jvi.01028-22

82. Li X, Kozlov S, El-Guindy A, Bhaduri-McIntosh S. Retrograde regulation by the viral protein kinase epigenetically sustains the Epstein-Barr virus latency-to-lytic switch to augment virus production. J Virol. 2019;93(17). doi: 10.1128/JVI.00572-19

83. Rauwel B, Jang S, Cassano M, Kapopoulou A, Barde I, Trono D. Release of human cytomegalovirus from latency by a KAP1/TRIM28 phosphorylation switch. eLife. 2015;4. doi: 10.7554/eLife.06068

84. Yarchoan R, Uldrick T. HIV-Associated cancers and related diseases. N Engl J Med. 2018;378(11):1029–41. doi: 10.1056/NEJMra1615896

85. Ma X, Yang T, Luo Y, Wu L, Jiang Y, Song Z, et al. TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting p-TEFb. eLife. 2019;8. doi: 10.7554/eLife.42426

86. Yang B, El Farran C, Guo H, Yu T, Fang H, Wang H, et al. Systematic identification of factors for provirus silencing in embryonic stem cells. Cell. 2015;163(1):230–45. doi: 10.1016/j.cell.2015.08.037

87. Wolf D, Goff S. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 2007;131(1):46–57. doi: 10.1016/j.cell.2007.07.026

88. Lee A, Pan D, Bao X, Hu M, Li F, Li C. Endogenous retrovirus activation as a key mechanism of anti-tumor immune response in radiotherapy. Radiat Res. 2020;193(4):305–17. doi: 10.1667/RADE-20-00013

89. Lin J, Guo D, Liu H, Zhou W, Wang C, Müller I, et al. The SETDB1-TRIM28 complex suppresses antitumor immunity. Cancer Immunol Res. 2021;9(12):1413–24. doi: 10.1158/2326-6066.CIR-21-0754

90. Kamitani S, Ohbayashi N, Ikeda O, Togi S, Muromoto R, Sekine Y, et al. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression. Biochem Biophys Res Commun. 2008;370(2):366–70. doi: 10.1016/j.bbrc.2008.03.104

91. Liang Q, Deng H, Li X, Wu X, Tang Q, Chang T, et al. Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J Immunol. 2011;187(9):4754–63. doi: 10.4049/jimmunol.1101704

92. Eames H, Saliba D, Krausgruber T, Lanfrancotti A, Ryzhakov G, Udalova I. KAP1/TRIM28: an inhibitor of IRF5 function in inflammatory macrophages. Immunobiology. 2012;217(12):1315–24. doi: 10.1016/j.imbio.2012.07.026

93. Gehrmann U, Burbage M, Zueva E, Goudot C, Esnault C, Ye M, et al. Critical role for TRIM28 and HP1b/g in the epigenetic control of T cell metabolic reprograming and effector differentiation. Proc Natl Acad Sci U S A. 2019;116(51):25839–49. doi: 10.1073/pnas.1901639116

94. Chikuma S, Yamanaka S, Nakagawa S, Ueda M, Hayabuchi H, Tokifuji Y, et al. TRIM28 expression on dendritic cells prevents excessive T cell priming by silencing endogenous retrovirus. J Immunol. 2021;206(7):1528–39. doi: 10.4049/jimmunol.2001003

95. Gao L, Wu Z, Assaraf Y, Chen Z, Wang L. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist Updat. 2021;57:100770. doi: 10.1016/j.drup.2021.100770

96. Wu G, Pen J, Huang Y, An S, Liu Y, Yang Y, et al. KAP1 inhibits the Raf-MEK-ERK pathway to promote tumorigenesis in A549 lung cancer cells. Mol Carcinog. 2018;57(10):1396–407. doi: 10.1002/mc.22853

97. Zhang J, Fan X, Liao L, Zhu Y, Wan X, Rao H, et al. TRIM28 attenuates bortezomib sensitivity of hepatocellular carcinoma cells through enhanced proteasome expression. Clin Transl Med. 2022;12(1) doi: 10.1002/ctm2.603

98. Lionnard L, Duc P, Brennan M, Kueh A, Pal M, Guardia F, et al. TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death Differ. 2019;26(5):902–17. doi: 10.1038/s41418-018-0169-5

99. Hu C, Zhang S, Gao X, Gao X, Xu X, Lv Y, et al. Roles of kruppel-associated box (KRAB)-associated Co-repressor KAP1 ser-473 phosphorylation in DNA damage response. J Biol Chem. 2012;287(23):18937–52. doi: 10.1074/jbc.M111.313262

100. Wang C, Rauscher F, Cress W, Chen J. Regulation of E2F1 function by the nuclear corepressor KAP1. J Biol Chem. 2007;282(41):29902–9. doi: 10.1074/jbc.M704757200.

101. Brown C, Lain S, Verma C, Fersht A, Lane D. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009;9(12):862–73. doi: 10.1038/nrc2763.

102. Okamoto K, Kitabayashi I, Taya Y. KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction. Biochem Biophys Res Commun. 2006;351(1):216–22. doi: 10.1016/j.bbrc.2006.10.022.

103. Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, et al. ROS in cancer therapy: The bright side of the moon. Exp Mol Med. 2020;52(2):192–203. doi: 10.1038/s12276-020-0384-2.