Mechanisms and Therapeutic Implications of Radiation Resistance in DU-145 Prostate Cancer Cells: A Comprehensive Narrative Review

Main Article Content

Ensieh Sagheb Sadeghi

Abstract

Prostate cancer is a leading cause of cancer-related deaths among men worldwide, with advanced and castration-resistant forms posing significant treatment challenges. Among the various factors influencing prostate cancer progression and treatment resistance, radiation resistance represents a critical barrier to effective therapy. DU-145, a cell line derived from a metastatic prostate tumor, serves as a key model for studying radiation resistance in prostate cancer. This narrative review explores the molecular mechanisms underlying radiation resistance in DU-145 cells, including the roles of DNA damage response (DDR), cell cycle regulation, apoptotic evasion, and autophagy. Additionally, we discuss potential therapeutic strategies aimed at overcoming radiation resistance, highlighting the importance of targeting specific pathways and employing combination therapies to enhance treatment efficacy. The review also provides a broader context by discussing the implications of radiation resistance in prostate cancer, emphasizing the need for personalized treatment approaches to improve patient outcomes.

Article Details

Section
Reveiw Article

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. DOI: 10.3322/caac.21590

2. Skvortsova I, Skvortsov S, Stasyk T, Raju U, Popper BA, Schiestl B, et al. Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics. 2008;8(21):4521-4533. DOI: 10.1002/pmic.200800113

3. Veuger SJ, Hunter JE, Durkacz BW. Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Oncogene. 2009;28(6):832-842. DOI: 10.1038/onc.2008.439

4. Wang W, Mani AM, Wu ZH. DNA damage-induced nuclear factor-kappaB activation and its roles in cancer progression. J Cancer Metastasis Treat. 2017;3:45-59. DOI: 10.20517/2394-4722.2017.03

5. Hou Y, Liang H, Rao E, et al. Non-canonical NF-kappa B antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity. 2018;49(3):490-503. DOI: 10.1016/j.immuni.2018.07.008

6. Corre S, Galibert MD. Upstream stimulating factors: highly versatile stress-responsive transcription factors. Pigment Cell Res. 2005;18(5):337-348. DOI: 10.1111/j.1600-0749.2005.00262.x

7. Luo X, Sawadogo M. Functional domains of the transcription factor USF2: atypical nuclear localization signals and context-dependent transcriptional activation domains. Mol Cell Biol. 1996;16(4):1367-1375. DOI: 10.1128/MCB.16.4.1367

8. Sawadogo M. Multiple forms of the human gene-specific transcription factor USF. II. DNA binding properties and transcriptional activity of the purified HeLa USF. J Biol Chem. 1988;263(24):11994-12001.

9. Atchley WR, Fitch WM. A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA. 1997;94(10):5172-5176.

10. Vettese-Dadey M, Grant PA, Hebbes TR, Crane-Robinson C, Allis CD, Workman JL. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 1996;15(10):2508-2518.

11. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074-1080.

12. Pant K, Peixoto E, Richard S, Gradilone SA. Role of histone deacetylases in carcinogenesis: potential role in cholangiocarcinoma. Cells. 2020;9(3):780. DOI: 10.3390/cells9030780

13. Chung YL, Lee YH, Yen SH, Chi KH. A novel approach for nasopharyngeal carcinoma treatment uses phenylbutyrate as a protein kinase C modulator: implications for radiosensitization and EBV-targeted therapy. Clin Cancer Res. 2000;6(4):1452-1458.

14. Arundel CM, Glicksman AS, Leith JT. Enhancement of radiation injury in human colon tumor cells by the maturational agent sodium butyrate (NaB). Radiat Res. 1985;104(3):443-448.

15. Biade S, Stobbe CC, Boyd JT, Chapman JD. Chemical agents that promote chromatin compaction radiosensitize tumour cells. Int J Radiat Biol. 2001;77(10):1033-1042. DOI: 10.1080/09553000110066068

16. Kim JH, Shin JH, Kim IH. Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor. Int J Radiat Oncol Biol Phys. 2004;59(4):1174-1180. DOI: 10.1016/j.ijrobp.2004.03.001

17. Mohammadi Bondarkhilli SA, Kordkatouli M, Maroufi M, Dulskas A. Oncogenic and anticancer roles of miRNAs in colorectal cancer: A review. Micro Nano Bio Aspects. 2024;3(1):14-22.

18. Gerelchuluun A, Maeda J, Manabe E, Brents CA, Sakae T, Fujimori A, et al. Histone deacetylase inhibitor induced radiation sensitization effects on human cancer cells after photon and hadron radiation exposure. Int J Mol Sci. 2018;19(2):496. DOI: 10.3390/ijms19020496

19. Moertl S, Payer S, Kell R, Winkler K, Anastasov N, Atkinson MJ. Comparison of radiosensitization by HDAC inhibitors CUDC-101 and SAHA in pancreatic cancer cells. Int J Mol Sci. 2019;20(13):3259-3273. DOI: 10.3390/ijms20133259

20. Camphausen K, Burgan W, Cerra M, Oswald KA, Trepel JB, Lee MJ, et al. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res. 2004;64(1):316-21. DOI: 10.1158/0008-5472.can-03-2630

21. Camphausen K, Cerna D, Scott T, Sproull M, Burgan WE, Cerra MA, et al. Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer. 2005;114(3):380-6. DOI: 10.1002/ijc.20774

22. Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang SM, Harari PM. Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys. 2005;62(1):223-229. DOI: 10.1016/j.ijrobp.2004.12.088

23. Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, et al. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res. 2005;11(13):4912-4922. DOI: 10.1158/1078-0432.CCR-04-2088

24. Groselj B, Sharma NL, Hamdy FC, Kerr M, Kiltie AE. Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair. Br J Cancer. 2013;108(4):748-754. DOI: 10.1038/bjc.2013.21

25. Kim MS, Baek JH, Chakravarty D, Sidransky D, Carrier F. Sensitization to UV-induced apoptosis by the histone deacetylase inhibitor trichostatin A (TSA). Exp Cell Res. 2005;306(1):94-102. DOI: 10.1016/j.yexcr.2005.02.013

26. Lu Q, Yang YT, Chen CS, Davis M, Byrd JC, Etherton MR, et al. Zn2+-chelating motif-tethered short-chain fatty acids as a novel class of histone deacetylase inhibitors. J Med Chem. 2004;47(2):467-474. DOI: 10.1021/jm0303655

27. Sborov DW, Canella A, Hade EM, et al. A phase 1 trial of the HDAC inhibitor AR-42 in patients with multiple myeloma and T- and B-cell lymphomas. Leuk Lymphoma. 2017;58(10):2310-2318. DOI: 10.1080/10428194.2017.1298751

28. Goueli BS, Janknecht R. Regulation of telomerase reverse transcriptase gene activity by upstream stimulatory factor. Oncogene. 2003;22(39):8042-8047. DOI: 10.1038/sj.onc.1206847

29. Ahmed MM, Sells SF, Venkatasubbarao K, Fruitwala SM, Muthukkumar S, Harp C, et al. Ionizing radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR-1. J Biol Chem. 1997;272(52):33056-33061.

30. Gupta S, Koru-Sengul T, Arnold SM, Devi GR, Mohiuddin M, Ahmed MM. Low-dose fractionated radiation potentiates the effects of cisplatin independent of the hyper-radiation sensitivity in human lung cancer cells. Mol Cancer Ther. 2011;10(2):292-302. DOI: 10.1158/1535-7163.MCT-10-0630

31. Rahman I, Marwick J, Kirkham P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem Pharmacol. 2004;68(6):1255-1267.

32. Fischle W, Kiermer V, Dequiedt F, Verdin E. The emerging role of class II histone deacetylases. Biochem Cell Biol. 2001;79(3):337-348.

33. Szentirmay MN, Yang HX, Pawar SA, Vinson C, Sawadogo M. The IGF2 receptor is a USF2-specific target in nontumorigenic mammary epithelial cells but not in breast cancer cells. J Biol Chem. 2003;278(39):37231-37240. DOI: 10.1074/jbc.M305791200

34. Cogswell JP, Godlevski MM, Bonham M, Bisi J, Babiss L. Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter. Mol Cell Biol. 1995;15(5):2782-2790 DOI: 10.1128/MCB.15.5.2782

35. North S, Espanel X, Bantignies F, et al. Regulation of cdc2 gene expression by the upstream stimulatory factors (USFs). Oncogene. 1999;18(11):1945-1955.

36. Galibert MD, Carreira S, Goding CR. The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression. EMBO J. 2001;20(17):5022-5031.

37. Corre S, Primot A, Baron Y, Le Seyec J, Goding CR, Galibert MD. Target gene specificity of USF-1 is directed via p38-mediated phosphorylation dependent acetylation. J Biol Chem. 2009;284:18851-18862. DOI: 10.1074/jbc.M808605200

38. Chen N, Szentirmay MN, Pawar SA, Sirito M, Wang J, Wang Z, t al. Tumor-suppression function of transcription factor USF2 in prostate carcinogenesis. Oncogene. 2006;25(4):579-87. DOI: 10.1038/sj.onc.1209079

39. Ismail PM, Lu T, Sawadogo M. Loss of USF transcriptional activity in breast cancer cell lines. Oncogene. 1999;18(40):5582-5591. DOI: 10.1038/sj.onc.1202932

40. Ocejo-Garcia M, Baokbah TA, Ashurst HL, Cowlishaw D, Soomro I, Coulson JM, Woll PJ. Roles for USF-2 in lung cancer proliferation and bronchial carcinogenesis. J Pathol. 2005;206(2):151-159. DOI: 10.1002/path.1775

41. Sternglanz R. Histone acetylation: a gateway to transcriptional activation. Trends Biochem Sci. 1996;21(10):357-358. DOI: 10.1038/sj.onc.1209079

42. Kordkatouli M, CHO WC, Mohammad Bondarkhilli SA, Dulskas A, Qureshi SA. Oct-4 and Its Role in the Oncogenesis of Colorectal Cancer. Middle East Journal of Cancer. 2024;15(2_Supplement).

43. Verza FA, Das U, Fachin AL, Dimmock JR, Marins M. Roles of histone deacetylases and inhibitors in anticancer therapy. Cancers. 2020;12(6):1664-1691. DOI: 10.3390/cancers12061664

44. Spohrer S, Gross R, Nalbach L, et al. Functional interplay between the transcription factors USF1 and PDX-1 and protein kinase CK2 in pancreatic beta-cells. Sci Rep. 2017;7(1):16367. DOI: 10.1038/s41598-017-16590-0

45. Cheki M, Yahyapour R, Farhood B, et al. COX-2 in radiotherapy: a potential target for radioprotection and radiosensitization. Curr Mol Pharmacol. 2018;11(3):173-183. DOI: 10.2174/1874467211666180219102520

46. Gao F, Zafar MI, Juttner S, Hocker M, Wiedenmann B. Expression and molecular regulation of the Cox2 gene in gastroenteropancreatic neuroendocrine tumors and antiproliferation of nonsteroidal anti-inflammatory drugs (NSAIDs). Med Sci Monit. 2018;24:8125-8140. DOI: 10.12659/MSM.912419

47. Kim Y, Fischer SM. Transcriptional regulation of cyclooxygenase-2 in mouse skin carcinoma cells. Regulatory role of CCAAT/enhancer-binding proteins in the differential expression of cyclooxygenase-2 in normal and neoplastic tissues. J Biol Chem. 1998;273(42):27686-27694. DOI: 10.1074/jbc.273.42.27686

48. Sahebi R, Akbari N, Bayat Z, Rashidmayvan M, Mansoori A, Beihaghi, M. A Summary of Autophagy Mechanisms in Cancer Cells. Res Biotechnol Environ Sci. 2022;1(1):28–35. DOI: 10.58803/RBES.2022.1.1.06

49. Parzych KR and Klionsky DJ. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460-473. DOI: 10.1089/ars.2013.5371

50. Yang Z and Klionsky DJ. Mammalian autophagy: Core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22:124-131. DOI: 10.1016/j.ceb.2009.11.014