Screening for Antimicrobial, Antioxidant, and Anticancer Potential of Silver Nanoparticles Synthesized from Gloriosa superba (L)

Main Article Content

Antony Joseph Thatheyus

Abstract

Introduction: Comprehending and manipulating biological processes at the nanoscale level is essential for advancing the field of nanomedicine. Silver nanoparticles exhibit cytotoxic effects on cancer cells and hold promise as antitumor therapeutic agents. Various types of nanoparticles have demonstrated unique biological activities that can trigger autophagy and facilitate cell death. Additionally, numerous plant extracts have been effectively utilized to synthesize silver nanoparticles. The present investigation evaluated the antimicrobial, antioxidant, antihemolytic, and anticancer activities of silver nanoparticles synthesized from the tuber extract of Gloriosa superba (L).


Materials and Methods: The silver nanoparticles obtained from G. superba underwent characterization through a range of techniques, including UV-visible spectroscopy, Energy Dispersive X-ray spectroscopy (EDX), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The antimicrobial, antioxidant, antihemolytic, and anticancer potential against human breast cancer cells (MCF-7) of the synthesized nanoparticles were tested using Kirby-Bauer method, DPPH free radical scavenging assay, serial dilution method, and cytotoxicity assay, respectively.


Results:  The findings revealed that silver nanoparticles produced from the tuber extract of G. superba exhibited antimicrobial, antioxidant, and antihemolytic properties. Additionally, these nanoparticles demonstrated their ability to scavenge DPPH radicals, resulting in reduced viability of cytotoxic cells as the concentration of nanoparticles increased. Importantly, MCF-7, the human breast cancer cell line with estrogen, progesterone, and glucocorticoid receptors exhibited greater cytotoxic effects when treated with silver nanoparticles, compared to conventional drugs.


Conclusion: More extensive research is needed to explore the bioactive compounds in G. superba and elucidate the molecular mechanisms that contribute to its effects, which is essential for its safe and effective use in medicine.

Article Details

Section
Original Article

References

1. Lin L, Li Z, Yan L, Liu Y, Yang H, Li H. Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990–2019. J Hematol Oncol. 2021;14:1-24. DOI:10.1186/s13045-021-01213-z

2. Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14:101174. DOI: 10.1016/j.tranon.2021.101174

3. Haleem A, Javaid M, Singh RP, Rab S, Suman R. Applications of nanotechnology in medical field: a brief review. Global Health J. 2023;7:70-77. DOI:10.1016/j.glohj.2023.02.008

4. Satapathy S, Shukla SP. Application of a marine cyanobacterium zPhormidium fragile for green synthesis of silver nanoparticles. Indian J Biotechnol. 2017;16:110-113. Available at:https://nopr.niscpr.res.in/handle/123456789/42296

5. Ananthalakshmi R, Aaisha M, Harikesavan G. Effect of Silver Nanoparticles on Beneficial Microbes in the Environment. J Sci Ind Res. 2019;78:551-554. Available at: https://nopr.niscpr.res.in/handle/123456789/49552

6. Bartwal A, Sati C. Biosynthesis of silver nanoparticles from flowers of Rhododenderon campanulatum tree of Tungnath Himalaya. Appl Innov Res. 2020;2:39-43. Available at: https://nopr.niscpr.res.in/handle/123456789/54962

7. Bhat P, Nivedita S, Roya S. Use of sericin of Bombyx mori in the synthesis of silver nanoparticles, their characterization and application. Indian J Fibre Text Res. 2011;36:168-171. Available at: https://nopr.niscpr.res.in/handle/123456789/11893

8. Rajam KS, Rani ME, Gunaseeli R, Munavar MH. Extracellular synthesis of silver nanoparticles by the fungus Emericella nidulans EV4 and its application. Indian J Exp Biol. 2017; 55: 262-265. Available at: https://nopr.niscpr.res.in/handle/123456789/41177

9. Kamil D, Prameeladevi T, Ganesh S, Prabhakaran N, Nareshkumar R, Thomas S. Green synthesis of silver nanoparticles by entomopathogenic fungus Beauveria bassiana and their bioefficacy against mustard aphid (Lipaphis erysimi Kalt.). Indian J Exp Biol. 2017:55: 555-561. Available at: https://nopr.niscpr.res.in/handle/123456789/42555

10. Hsueh Y, Lin K, Ke W, Hsieh C, Chiang C, Tzou D, et al. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PLoS ONE. 2015;10:1-17. DOI: 10.1371/journal.pone.0144306

11. Jung K, Koo C, Kim W, Shin S, Kim H, Park H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microb. 2011;74:2171-2178. DOI:10.1128/AEM.02001-07

12. Liao S, Zhang Y, Pan X, Zhu F, Jiang C, Liu Q, et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomed. 2019;14:1469-1487. DOI:10.2147/IJN.S191340

13. Tumoyan J, Kazaryan S, Hovhannisyan A. The impact of biogenic silver nanoparticles on the enzymatic antioxidant system of Wistar Rats’ kidney. In: Sontea V, Tiginyanu I, Railean S, editors. 6th International Conference on Nanotechnologies and Biomedical Engineering. ICNBME 2023. IFMBE Proceedings, Springer, Cham. 2024. DOI: 10.1007/978-3-031-42775-6_58

14. Azeem A, Ahmed M, Shaban M, Elsayed N. In vitro antioxidant, anticancer, anti-inflammatory, anti-diabetic and anti-Alzheimer potentials of innovative macroalgae bio-capped silver nanoparticles. Environ Sci Pollut R. 2022;29:59930-59947. DOI:10.1007/s11356-022-20039-x

15. Wei L, Lu J, Xu H, Patel A, Chen S, Chen G. Silver nanoparticles: Synthesis, properties and therapeutic applications. Dru Dis Tod. 2015;20:595-601. DOI:10.1016/j.drudis.2014.11.014

16. Hussein A, Mohamad H, Ghazaly M, Laith A, Abdullah A. Cytotoxic effects of Tetraselmis suecica chloroform extracts with silver nanoparticle co-application on MCF-7, 4 T1, and Vero cell lines. J Appl Phycol. 2020;32:127-143. DOI: 10.1007/s10811-019-01905-7

17. Murugesan M, Pannerselvam S, Anand J, Murugan R, Thiyagarajan D. Facile green synthesis and characterization of Gloriosa superba L. tuber extract-capped silver nanoparticles (GST-AgNPs) and its potential antibacterial and anticancer activities against A549 human cancer cells. Envt Nanotech Monit Mangt. 2021;15:100460. DOI: 10.1016/j.enmm.2021100460

18. Zamani M, Delfani M, and Jabbari M. Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies. Spectrochim Acta A. 2018;201:288-299. DOI: 10.1016/j.saa.2018.05.004

19. Chen S, Fang A, Zhong Y, Tang J. Ziziphora clinopodioides leaf aqueous extract mediated novel green synthesis of iron nanoparticles and its anti-hemolytic anemia potential: A chemobiological study. Arab J Chem. 2022;15:103561-103577. DOI: 10.1016/j.arabjc.2021.103561

20. Rathor L. Medicinal plants: A rich source of bioactive molecules used in drug development. In: Mandal SC, Chakraborty R, Sen S, editors. Evidence based validation of traditional medicines. Springer, Singapore, 2021. Available at: https://link.springer.com/chapter/10.1007/978-981-15-8127-4_10

21. Wang Y, Xu Y, Liu Z. A review of plant antipathogenic constituents: Source, activity and mechanism. Pestic Biochem Phys. 2022;188:105225. DOI:10.1016/j.pestbp.2022.105225

22. Chowdhary VA, Tank JG. Biomolecules regulating defense mechanism in plants. Proc Natl Acad Sci India Sect B Biol Sci. 2023;93:17-25. DOI: 10.1007/s40011-022-01387-7

23. Mosoh A, Khandel K, Verma K, Vendrame A. Phytochemical analysis and enhanced production of alkaloids in non-dormant corm-derived callus of Gloriosa superba (L.) using plant growth regulators and abiotic elicitors. Plant Cell, Tiss Organ Cult. 2024;156:1-21. DOI: 10.1007/s11240-023-02674-5

24. Süntar I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem Rev. 2020;19:1199-1209. DOI: 10.1007/s11101-019-09629-9

25. Mohan E, Suriya S, Shanmugam S, Rajendran K. Qualitative phytochemical screening of selected medicinal plants. J Drug Deliv Ther. 2021;11:141-144. DOI:10.22270/jddt.v11i2.4609

26. Liu F, Yu J, Yin G, Chao B. Methods for separation, identification, characterization and quantification of silver nanoparticles. Trend Anal Chem. 2012;33:95-106. DOI: 10.1016/j.trac.2011.10.010

27. Thakur K, Verma, V. A review on green synthesis, characterization and anticancer application of metallic nanoparticles. Appl Biochem Biotechnol. 2021;193:2357-2378. DOI: 10.1007/s12010-021-03598-6

28. Pryshchepa O, Pomastowski P, and Buszewski B. Silver nanoparticles: Synthesis, investigation techniques and properties. Adv Colloid Interfac Sci. 2020;284:102246. DOI: 10.1016/j.cis.2020.102246

29. Mani M, Pavithra S, Mohanraj K, Kumaresan S, Alotaibi S, Eraqi M, et al. Studies on the spectrometric analysis of metallic silver nanoparticles (Ag NPs) using Basella alba leaf for the antibacterial activities. Envn Res. 2021;199:111274. DOI: 10.1016/j.envres.2021.111274

30. Parvathiraja C, Shailajha S, Shanavas S, Gurung J. Biosynthesis of silver nanoparticles by Cyperus pangorei and its potential in structural, optical and catalytic dye degradation. Appl Nanosci. 2021;11:477-491. DOI:10.1007/s13204-020-01585-7

31. Uddin R, Siddique B, Rahman F, Ullah A, Khan R. Cocos nucifera leaf extract mediated green synthesis of silver nanoparticles for enhanced antibacterial activity. J Inorg Organomet Polym Mat. 2020;30:3305-3316. DOI:10.1007/s10904-020-01506-9

32. Giridasappa A, Ismail M, Rangappa D, Shanubhoganahalli G, Marilingaiah R, Gollapalli R, et al. Antioxidant, antiproliferative and antihemolytic properties of phytofabricated silver nanoparticles using Simarouba glauca and Celastrus paniculatus extracts. Appl Nanosci. 2021;11:2561-2576. DOI:10.1007/s13204-021-02084-z

33. Huang X, Devi S, Bordiga M, Brennan S, Xu B. Phenolic compounds mediated biosynthesis of gold nanoparticles and evaluation of their bioactivities: A review. Int J Food Sci Tech. 2023;58:1673-1694. DOI: 10.1111/ijfs.16346

34. Ratan A, Haidere F, Nurunnabi D, Shahriar M, Ahammad S, Shim Y Cho Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers. 2020;12:855. DOI: 10.3390/cancers12040855